
Zero Shot Learning for Image Classification

Mansi Mane, Raajitha Gummadi, Dhanashree Balaram
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

mmane@andrew.cmu.edu, rgummadi@andrew.cmu.edu, dbalaram@andrew.cmu.edu

1 Introduction and Motivation

Human beings have the ability to recognize an object that they have not seen before, given a
description of the characteristics of the said object. For example, consider a person that has never
seen a zebra but has seen a horse. Given a short description of the features of a zebra as ’Something
that looks like a horse and has black and white stripes’ the person is capable of identifying a zebra.
Zero shot learning (ZSL) aims at modeling this ability.

Zero shot learning (ZSL) is therefore an extension of supervised learning in cases such as classification
problems, where there are no labeled examples available for few classes. Thus, it predicts classes that
are not in the training data. For example, consider an image classification neural network trained on
classes such as cat and car, but not on truck. Given an image of a truck during test time, this network
should be able to predict truck as an unseen class and assign it to the class ’truck’. Our proposed
method is an extension of an existing zero shot learning algorithm [1] to increase the accuracy of
seen classes and unseen classes.

2 Existing methods

In today’s world, we have an increasing number of datasets for problems like image classification in a
multi-class setting. Algorithms in this setting usually have a final layer called a softmax layer which
predicts the most likely class. A legitimate problem though, is that if we need to train a network to
predict all existing classes in the world, we cannot handle the computing power required(enormous
dataset and softmax layer). This is why it is believed that zero shot learning will solve the problem of
classifying images that do not belong to the training dataset.

Zero shot learning has gained significant importance in the last decade, enforcing that learning objects
that have not been seen before might become a necessity in the future. Some existing approaches to
Zero shot learning that we surveyed have been summarized below:

Learning Intermediate Attribute classifier: These methods transfer target domain data (e.g. text
explaining images) into source domain attribute space. [2] learns probabilistic attribute classifiers and
makes class predictions by combining scores of those learned classifiers. In this method, attributes
are typically the nameable properties of an object, like color, or the presence or absence of a body
part. They propose a solution for learning with disjoint training and test classes by introducing a
small set of high-level semantic attributes that can be specified either on a per-class or on a per-image
level([2] uses Animal with Attribute dataset).Another method mentioned in [2] indirectly estimates
attribute probabilities of an image by first predicting the probabilities of each training class and then
multiplying by the class attribute components represented as a matrix.

Linear Embedding: These methods embed visual and text domain data into space characterized by
Kronecker product of features in both domains. Linear classifiers are then trained on this product
space. [3] [4] [5] use this approach. DEVISE[3] uses bi-linear compatibility function to associate
visual and auxiliary information. Auxiliary information assists the visual information in selecting the
correct class for classification. The paper Embarrassingly Simple Zero Shot Learning [6] uses the
same objective function as[3] with the addition of regularization.
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Non-Linear Embedding: This method of zero shot learning constructs product Kronecker feature
space by applying non-linear mapping on the original features. Zero shot learning through cross modal
transfer [1] implements this method. It first projects visual features (learned using auto-encoder) of
the images in low dimensional space and then applies tanh non-linearity on it. These intermediate
features are then projected into low dimensional space of word vectors again. Note that [7] decribes
image and text embeddings are projections from the space of pixels, or the space of text, to a new
space where nearest neighbors are semantically related. In semantic label embedding, image and
label embeddings are jointly trained so that semantic information is shared between modalities. For
example, an image of a tiger could be embedded in a space where it is near the label “tiger”, while
the label “tiger” would itself be near the label “lion”.Thus, the projection weights are trained to map
visual features to respective word vectors of that class. While predicting class of the new image,
the class of word vector nearest to the projected image vector is declared as object.[1] poses as a
baseline for our project. Another paper that implements non-linear embedding method is [8] . This
method learns multiple embeddings( parameters of the individual linear components) of the model
that maximize the compatibility between the input embedding (image, text, space) and the output
embedding (label space) of all training examples. The different parameter embeddings learnt may
capture different visual characteristics of objects, i.e. color, beak shape etc. and allow distribution of
the complexity among them, enabling the model to do better classification.

Hybrid Models: Semantic Similarity Embedding [9], Convex Combination of Semantic Embeddings
[10] and Synthesized Classifiers [11] express images and semantic class embeddings as a mixture of
seen class proportions, hence we group them as hybrid models.We do not go into details about hybrid
models, since our proposed approach deals with non linear embeddings.

3 Problem statement

We aim to build upon an existing method Socher et al [1] in order to achieve higher classification
accuracy for ZSL. As mentioned in section 2, in order to learn semantic relationships and class
memberships of images, we project the image feature vectors into a d-dimensional, semantic (similar
in context) word space F. Thus, images are mapped to be close to semantic word vectors corresponding
to their classes. This mapping is achieved by a single two-layer neural network. i.e, a weight parameter
map common to all classes. The model in [1] shows decrease in accuracy of unseen classes with
the increase in similar semantic vectors, also known as distractor words. As an extension to [1], we
aim to map the images into the word spaces using a parameter exclusive to each of the seen classes.
This maps the images of seen classes closer to their corresponding semantic word vector and thereby
improving the accuracy of seen classes. Additionally, the mapping of unseen classes is refined by the
strong mapping produced by each of seen class parameters, (elaborated in section 4) thus improving
the accuracy of unseen classification.

4 Proposed Approach

The baseline model [1], trains a neural network with two layers to learn a ‘single’ mapping that
projects an input image onto a word embedding space. Since every object is unique in its visual
features, the mapping of an object to its corresponding word vector is also unique. For example, an
image of a ‘dog’ is mapped to the word vector ‘dog’ differently than how an image of an ‘airplane’ is
mapped to the word vector of ‘airplane’. Hence, we hypothesize that learning this unique mapping
between a class and its respective word vectors increases the seen accuracy. Additionally, for unseen
classes, consider a seen class ‘dog’ that is closest to the unseen class of the input image say ‘cat’
when compared to other seen classes in the embedding space such as ‘airplane’ . Then, the word
vector obtained for cat’s image using dog’s mapping is closer to class ‘dog’ than the word vector
obtained for the image of cat by other seen classes such as ‘airplane’. According to this hypothesis, it
is probable that an improved accuracy for unseen classes can be achieved.

The proposed approach consists of extracting features from images and building the word vector
space. This is followed by training the network on seen classes. Finally testing is performed on
unseen and seen classes as described below.
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Visual Features and Word Representation

We use unsupervised soft-threshold autoencoder provided by Coates et al. [12] to extract image
features from raw pixels of the image as shown in figure 1(b). Each image is henceforth represented
by a vector x ∈ IRI .

Word vectors provided by Huang et al [13], thereby placing similar words in meaning like "happy"
and "joyful" closer to each other than "happy" and "sad". W = Ws ∪Wu are the set of word vectors
representing both seen and unseen visual classes, respectively.

Figure 1: (a) Manifold diagram for seen classes from [1], (b) Visual features and word representations

Training

Figure 2: Learning visual word embeddings

Consider a set of classes Y for both training and testing. Seen classes are defined as Ys and unseen
classes are defined as Yu. Consider that training occurs on 8 seen classes. Each class has a unique
neural network that learns to project images onto word embeddings of the respective class for all seen
images as shown in Figure 2. The process of training a single neural network is summarized below.

A training image feature vector belonging to any seen class, x(i) ∈ Xs is input to the neural network
corresponding to class y. The network learns a word embedding for an input image using parameters
θ
(2)
y , θ

(1)
y . To train these parameters, we minimize the following objective function for every seen

class:
J(Θy) = ty

∑
x(i)∈Xs

||wy − θ(2)y g(θ(1)y x(i))||2 − λ(1− ty)
∑

x(i)∈Xs

||wy − θ(2)y g(θ(1)y x(i))||2 (1)

where θ(1)y ∈ IRh×I , θ(2)y ∈ IRd×h and f is the tanh non-linearity and Θy ∈ (θ
(1)
y , θ

(2)
y ). wy is the

fixed word embedding of the class label y ∈ Ys obtained from Huang et al. ty is 1 if input belongs
to class y ∈ Ys and is 0 if input belongs to a different seen class. λ is the regularization term that
penalizes images that are not in class y to increase distance between projections of the class y and
other seen class word vectors. We train J(Θy) for every seen class. The process is repeated for each
of the seen classes. Thus we learn parameters θ(1) and θ(2) specific to each class as shown in Figure
2.

The average distance between the predicted embedding vector of images belonging to seen class y
and the word embedding vector for class y engenders the average variance for class y. This variance is
later used in testing to identify whether input test image belongs to seen or unseen class for Gaussian
discrimination.
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Testing

Figure 3: Visualization of semantic word space while predicting unseen classes, where V, the novelty
variable is unseen, i.e V = u, F is the d-dimensional semantic word space, Fcat, Fdog, Fship are all
the semantic vectors of seen classes cat, dog and ship. Σcat,Σdog,Σship are variance of the classes
and Wcat,Wdog,Wship are the mean word vectors provided by Huang et al. fcat, fdog, fship are the
projections of a new input image (from unseen class) into the word space F. dcat, ddog, dship are the
distances of projected word vectors from the projections of each neural network corresponding to
classes cat, dog and ship to the mean word vector of the unseen classes(denoted as du) (here only a
single unseen class is shown for clarity)

Inference Algorithm

1. Check if the given image is from a seen or an unseen class using the following equation.

P (V = s|f,Xs,Wc, θc) := 1∀y ∈ Ys : P (f |Fy, wcy) > Ty (2)

2. If V = u,
• Calculate distance dy between projected image embedding and all unseen class word

embeddings.
• Predict class label with maximum Py i.e. find nearest word vector W to f, using

Gaussian Discrimination.
3. If V = s, classify using Softmax for seen classes.

Given a test image feature vector, we first predict whether an image is from a seen class or an unseen
class. We use binary random variable V, where V ∈ (u, s) is used to predict seen (s) or unseen (u)
class. We define a hyper parameter Ty as threshold for all classes. If P (f |Fy, wy) > Ty for any
class, then the image is classified as ‘seen’ else, the image is classified as ‘unseen’. For example in
figure 3, if the image is from a zero shot category (deer), it will be projected much further from word
embeddings of seen classes (cat, dog and ship). Thus, P (f |Fy, wy) will be smaller than threshold for
seen classes. Ty is calculated as sum of Gaussian log probabilities with mean as word embeddings
obtained from Huang et al [13] and variance that is calculated for each class during training. For
example, if the image is an unseen image it lies outside the Gaussian spread of every seen class
centered at the its mean (word embedding). Therefore, sum of log probabilities (probability of image
belonging to seen class) of all seen classes will be less than the threshold. Therefore, we conclude that
the image does not belong to seen category. Alternatively, we can also learn class-specific Euclidean
distance cutoffs. If input image is mapped to semantic word space at an Euclidean distance more
than learned cutoffs of every seen class, we classify image as unseen. Cutoff for each seen class is
calculated as the value corresponding to highest accuracy while identifying respective class images.

In order to identify the unseen class, first a seen class that maps the unseen image closest to its mean
is chosen. Then, we find an unseen class closest to that seen class with smallest du. Where, du is the
distance of projected word vectors obtained using each seen class theta to mean of an unseen class.
Thus use Gaussian Discrimination to identify unseen class label as shown in figure 3.

One of the limitations of having unique mapping for every seen class is that the computation time
and complexity increases in proportion to the number of seen classes.
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5 Datasets

The visual models are trained using the CIFAR-10 data. It is a subset of the 80 million tiny images
dataset that was designed and created by the Canadian Institute for Advanced Research (CIFAR). It
consists of 60,000 32x32 color images in 10 classes, with 6000 images per class. There are 50,000
training images and 10,000 test images in the official data. The number of training images per class
is 5000. The label classes in the dataset include airplane automobile, bird, cat, deer, dog, frog, horse,
ship, truck. The classes are completely mutually exclusive. There is no overlap between automobiles
and trucks[14]. The text model is trained on documents extracted from wikipedia.org as mentioned
in Huang et al.

6 Experiments

6.1 Results of reimplementation of baseline model:

We have used [1] as our baseline model for zero shot learning. We reimplemented [15] and obtained
the results as shown in figure 4.Our reimplementation generated a model that follows the same
behavior as that of the original Gaussian model in our baseline paper[1].

Figure 4: (a) Result from re-implementation of [1], (b) Original paper Results for Gaussian model

The evaluation metric for our model is classification accuracy. We achieved an average classification
accuracy of 0.518 as seen in figure 4a,as compared to 0.58667 of our baseline model. As we increase
the threshold Ty, more images are classified as ’seen’, therefore, seen accuracy increases. The
baseline paper’s [1] results are given in figure 4b. The t-distributed stochastic neighbor embedding
(t-SNE) for the seen training data and testing data is shown in figure 5

Figure 5: (a) t-SNE plot for test data,(b) t-SNE plot for train data (Seen)
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6.2 Results of proposed model

The best model obtained using the proposed approach, shows a model accuracy of 36.63% for a
hyper-parameter combination of Learning rate = 0.01, penalty λ = 0.0001, number of hidden units =
200, sparsity= 0.035 and dropout = 0.25. Figure 6 shows a plot of seen and unseen accuracies vs
fraction of points classified as unseen. It can be inferred from this graph that the proposed approach
has lower accuracy on unseen classification.

Figure 6: Classification Accuracy intersection point for seen and unseen classification

Figure 7 shows t-SNE visualization of the best model. Mappings of the entire dataset are observed
to be coagulating around the word embedding of the corresponding seen class label. Since each
mapping (θ) is unique, it learns a unique pattern. This is explained in detail in section 7.

Figure 7: (a) t-SNE plot for unseen classes, (b) t-SNE plot for all classes
Refer to Appendix for confusion matrices.

6.3 Discussion and Analysis

The behavior of the model was analyzed by running experiments with different hyper parameters
such as penalty term λ, from equation1, dropout factor, sparsity parameter, and number of hidden
units of the neural network. Additionally, alternative approach of calculating threshold as mentioned
in section 4 is also tested. The observations are summarized below.

Experiments with hyper-parameter λ: For CIFAR10 dataset, 8 classes are considered as seen
classes. During training, mapping is learned on unbalanced data i.e. 1/8th of the images belong that
class while 7/8th images do not belong to that class. The network must learn to reject(map father
from mean) non-class images more than map respective class images. In order to incorporate this
concept, λ penalizes the images that do not belong to the class under consideration and maps images
father from its mean. i.e, λ in equation 1 is experimented with 0.1,0.01,0.0001 and 0 values. The best
accuracy was obtained for a λ of 0.0001. λ = 0, implies only learning mapping from respective class
images, the network does not see other class images at all. Increase in λ, minimizes the cost function
and thus network does not penalize images belonging to other classes.
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Search for other hyper parameters: Different values of dropout such as 0,0.25,0.5 and 0.75 were
tested by maintaining the learning rate at 0.01, the penalty value as 0.0001, sparsity as 0.035 and
number of hidden units as 200 as given in the table 1. The best average model accuracy(36.63%) was
achieved for a dropout fraction of 0.25. Learning rate of 0.1, 0.01 and 0.001 were tested, 0.1 renders
an unstable system while 0.001 results in slow conversion rates thus increasing the computation time.
Therefore learning rate of 0.01 is used in all experiments. Furthermore, number of hidden units were
varied between 100, 200 and 300. While 100 hidden units shows less accuracy due to under-fitting,
300 units over-fit the seen classes and result in less model accuracy. Thus 200 units were chosen for
optimal performance. Additionally, experiments were conducted with different values of the sparsity
parameter.Results of the hyper-parameter search are summarized in Table 1. In Table 1, the last
column, ’Model Accuracy’ is calculated by finding the intersection point of seen and unseen accuracy
curves plotted against fraction of points classified as unseen.(as seen in figure 6). The other columns
that have accuracy values represent the maximum accuracy that was achieved for seen and unseen
categories.

Table 1: Results of experimentation for proposed approach using log probability thresholding

Table 2: Comparison of Accuracies for proposed approach and baseline model

Table 2 shows a comparison of classification accuracies between the baseline model and the proposed
model for two thresholding methods as described in section 4. It is observed that Euclidean thresh-
olding performs better than log probability thresholding (LPT) for seen accuracy in both models.
For the baseline model, log probability thresholding performs worse than euclidean thresholding in
the case of unseen accuracy in the baseline approach but gives a similar accuracy for the proposed
model. This is because the classification of seen classes using Euclidean thresholding works better
with tailored mapping parameters over single mapping. An example of how Euclidean thresholds
are obtained is depicted in figure 8. For every class, cut-off is increased until accuracy saturates at
high value. At the highest accuracy, the corresponding cut-off is used as the euclidean threshold.
Note that Euclidean thresholds are calculated for every class, i.e., thresholds are class specific and
thus seen classes are aptly classified. This increases the seen class accuracy and therefore the overall
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model accuracy. Log-probability threshold on the other hand is obtained by calculating cutoffs by
marginalizing the log-probabilities of all classes.

Figure 8: Example of how an Euclidean threshold is calculated for a given class

7 Learnings and Future Work

Following multiple experiments as summarized in section 6, it can be concluded that the proposed
model with sum of log probabilities as threshold fails to perform when compared to the baseline model
[1]. One reason for this is that although all neural network parameters(θ) map to the word embedding
space uniquely, they map one input image to different manifolds (i.e, non-linear mapping using
different theta). i.e, each theta maps to a different embedding space. This behavior is depicted for a
reduced dataset for clarity in figure 9 where mappings of the input images seem to coagulate around
the word embedding of each seen class. This is a repercussion of having completely independent
mapping. Thus, in the future, linking the theta parameters by defining common loss for all, could
improve the unseen class accuracy.

Figure 9: Semantic word space(t-NSE) for reduced data

Proposed model has better accuracy when implemented with euclidean cutoff. This could be further
explored. One other limitation to this approach is that the theta parameter of each seen class is
trained on the whole dataset. Thus leaving only a small portion of true values for the objective
function to be trained on for that seen class. One of the solutions to this issue could be to try and
split data such that each of the neural networks get more true values of that particular seen class
than images from other seen classes during training as inputs. Furthermore, log probabilities are
currently calculated as isometric Gaussians to avoid overfitting. Seen accuracy could be increased
by learning non-isometric Gaussians if there is enough training data.Finally, number of parameters
required increases in proportion to the seen classes. This highly increases computation time and
complexity. Although this does not seem like a drastic effect for CIFAR10 dataset with only 8 seen
classes, as the number of seen categories increase, the number mapping parameters increase and thus
the computation complexity also increases proportionally.
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Appendix

Confusion matrix The confusion matrices for the best performing proposed model are given below.

Figure 10: Confusion matrix of seen classes

Figure 11: confusion matrix of unseen classes
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